



































































































































In this course we will need to learn

the weights of the neural network As

we have discussed in lecture that we

will be using gradient
descent to learn

the network weights

wCktD WCK E TWL

In the gradient descent
step we will

need to compute Fwd
In a neural

network the weights in the earlier

layers
are

connected to the loss

function through
a composition

of

functions
and in such cases computing

the gradients
require repeated

application

of the chain rule

 






































































































































In this discussion we will go over

a computational mechanism
that will

enable us to compute
the gradients

in an efficient and modular manner

Chain rule revisited

Let's consider the
following regularized

linear classification
model

Z w Xt b

y ELZ

f z y TT

D few

dreg Lt AR






































































































































we will learn the parameters w and b

Using gradient descent
Let's use

chain rule to compute the partial

derivatives olfreg clfreg
dw db

Lreg I olwxtD t t 2 at

I
oiwxtD Eft

w

wxtD t
olwxts Ef aw

wxtD tfocwxtdfwlwx
D aw

colwxt.D Efdlwx
DX i.io






































































































































DLreg
Tb

IGCwx D t5tzw

I
ocwxtb tj tzggwr

focwxt.to
t oCwxtb t to

wxt D Efokwxtbfy
cwx D

fotwx D tT.tl
wits

The above computation involves

Lots of copies of term from one

line to next

Lots of redundant
work For

instance the first 3 steps in the

two derivations above are nearly

identical






































































































































The idea behind backprop is to

share repeated computations
wherever

possible

Computational graphs and
backprop

Computational graphs
help to visualize

and contextualize
how we aim to

backpropagate
derivatives It is the

mechanism by which deeplearning

libraries compute gradients

A computational graph
is a directed

acyclic graph
where each node in

the graph denote a mathematical

operation






































































































































Let's draw the computational graph

for our running example

Z w Xt b

y ELZ

f z y TT

D zw2

dreg It AR

A
b

fm t

0

w 0






































































































































The back prop algorithm consists of two

steps

1 In forward pass we take

the input X and the initial values

f w and b and propagate

in the forward direction
through

the network to compute the quantities

in red

Cii In backward pass we compute

the derivatives starting
at the

output and propagating
it backward

to the input






































































































































So

dreg ft R

re9 Is I

L I 9

of g
Og

DLreg Ed Drees
Og OS

Dg

g

R Z are

dR_ aah

darn

dhreg DR dares

E TR

792






































































































































g y t

Dg
fy

I

dreg

Ty
Is Okey
dy OS

g

L OCZ

DT
Tz

O'CZ

offers
Egress

O'CZ g

2 btm

DZ
g

1 822 1

dreg Oz2Lreggy Ty Oz

de g
okwxtD oCwxtD
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dreg
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Dm
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X 0m_ or

Ox

dreg Om dared
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oh 0k7g

dreg
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Now by law of total derivatives

garef Haw EET i 8

EEE II IET
x 8k73g t Daz

Xo'CwxtD
oCwxtD t aw






































































































































Practiceproblemsi
t

w m I

x

In the above computational graph

h x IX IE RM

g
WX's GERM

M y
X

M C Rn

So
L 11m11s

Tm L 2M E Rh

m g X

Fgm
I Rn

xn

Earn 131






































































































































I de Tm th

g g m

2M C IRN

g
WX

FWS Tw Wx
Rnxnxn

Fwd Fwg Tg d

Fgf XT
2Cwx X xT

two 2 Wx X XT






































































































































2

a The computational graph
for L is

drawn below

µ m

t
i

from the computational graph

2 log 1K I Iziogcaletk

Using matrix cookbook

8 ELK DI z 455

Ean 57






































































































































Since operator distributes the

gradient
so

I Li

Tm FCK 5

since operator switches the

gradient so

LI

IN
KT

Now

N A AT

using
the hint given in the

problem
8 DT

EL If
KT A

DA


















































































































Since AT has the same elements

as A so taking the gradient

of L w r.t At we have

9h1
fat

At
ON

AT f In Lk'T

Eh 12 EAT
DAT

Now adding the gradient paths
through

A and AT we get

8 EI
A KAJI

Since K is symmetric
Ll 22k A



b The computational graph for Lz is

drawn below

IQ
OEeoEtnnOE'qxoEoiiotIoLvdLv2Lv0Lv

Jp Ept TJ
fo TR BBT

From the computational graph

Lz 12
trCJ

Now from matrix cookbook

Lz II
Earn 99



From computational graph
I

J P BBT

Hence using the hint

Lv

Tpi Iz BBT

Now using the given hint

Ddr 25
Tp

p
1 de

since operator distributes
the

gradient so

8
F da p

i

Ifl



since operator
switches the gradient

SO

8 25 k p
l

Now

F HAT

Using the green hint

Ln xp
I am P IA

d P 1BBTP A

TA



Using the same reasoning as to

compute the derivative of with

respect to AT

2 AT p
t p

t

Op i

Iz AT
p
I BBT p

1

Now adding
the gradients paths

through

A and AT we get y

LEI
In P

BBTP A EATp BB
Tp 1

T

1nF
BBTP At Lp15BBT TJ's



Since P is symmetric so

In Pi
BBTP IA t g

p BB TP tf

2 P
t
B BTP A
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We will use back propagation to

compute the required gradients

Starting from the loss function

L

L 1191122

d 2g C IRK
da

Now
q P L

computing
the local gradient

at

dat
Tp

I ERKXK

dar

Fy
I C RKXK



Using chain rule back propagating

to P we have

II Is Ea
IL Zor C IRK

NOW Zz

P 2

Where we raise each entry

of Zz to the power

f

jeI



computing the local gradient

d z

diag
ZZ en 2 ERM

Using
chain rule back propagating

to Zz We have

Ez fIz IF

I
2 22dm 2.0

2g
E IRK

d 2 2



since gate passes the

gradient so

IL 222dm 2 2g C IRK

Tu

Ile Zhen 2 2g C IRK

dbz

Now
U W 2h

computing
the local gradient

mxK

WII E R

Using
chain rule back Propagating

to

h we have



II Eu
WII C IRM
die

By the 3 D tensor derivative
trick

learned in class

d z
It hit

EiRk
m

Now

h rel u CZ

Computing the local gradient
new

t.dz
diag Zi o e Rm

m

dhl



using
chain rule back propagating

to 2 we have

Ez 1 off
diag Zao IL

IL

DL Itcz o DI E Rm
dh

IZ

Since passes the gradient
so

DI E Rm
IZ

Idf
DI E RM
IZ



Now

f Wix

computing the local gradient

Txt
WIT E zn

m

using
chain rule backpropagating

to
we have

off LIFE
n

all W TI E IR
DZ

ex



By the 3 D tensor derivative

trick learned in class

wY
XT

7
XT C iRm

n


